Wheel Alignment is often confused with Wheel Balancing. The two really have nothing to do with each other except for the fact that they affect ride and handling. If a wheel is out of balance, it will cause a vibration at highway speeds that can be felt in the steering wheel and/or the seat. If the alignment is out, it can cause excessive tire wear and steering or tracking problems.
Camber
Camber wear pattern
If the camber is different from side to side it can cause a pulling problem. The vehicle will pull to the side with the more positive camber. On many front-wheel-drive vehicles, camber is not adjustable. If the camber is out on these cars, it indicates that something is worn or bent, possibly from an accident and must be repaired or replaced.
Caster
When you turn the steering wheel, the front wheels respond by turning on a pivot attached to the suspension system. Caster is the angle of this steering pivot, measured in degrees, when viewed from the side of the vehicle. If the top of the pivot is leaning toward the rear of the car, then the caster is positive, if it is leaning toward the front, it is negative. If the caster is out of adjustment, it can cause problems in straight line tracking. If the caster is different from side to side, the vehicle will pull to the side with the less positive caster. If the caster is equal but too negative, the steering will be light and the vehicle will wander and be difficult to keep in a straight line. If the caster is equal but too positive, the steering will be heavy and the steering wheel may kick when you hit a bump. Caster has little affect on tire wear.
Toe-in
If the sharp edges of the tread sections are pointing to the center of the car, then there is too much toe-in. If they are pointed to the outside of the car then there is too much toe-out. Toe is always adjustable on the front wheels and on some cars, is also adjustable for the rear wheels.
Four-Wheel Alignments
There are two main types of 4-wheel alignments. In each case, the technician will place an instrument on all four wheels. In the first type the rear toe and tracking is checked, but all adjustments are made at the front wheels. This is done on vehicles that do not have adjustments on the rear. The second type is a full 4-wheel alignment where the adjustments are first made to true up the rear alignment, then the front is adjusted. A full 4-wheel alignment will cost more than the other type because there is more work involved.
Other facts every driver should know about wheel alignments.
- A proper wheel alignment should always start and end with a test drive.
- The front end and steering linkage should be checked for wear before performing an alignment.
The tires should all be in good shape with even wear patterns. If you have a tire with excessive camber wear, for instance, and you correct the alignment problem that caused that wear, the tire will now be making only partial contact with the road. (see illustration on right)
- Pulling problems are not always related to wheel alignment. Problems with tires (especially unequal air pressure), brakes and power steering can also be responsible. It is up to a good wheel alignment technician to determine the cause.
Advanced Wheel Alignment Information.
While Camber, Caster & Toe-in are the settings that are always checked when doing a wheel alignment, they are not the only settings. Below is a list of the alignment settings that are important for a wheel alignment technician to know about in order to diagnose front end problems.
To find out more about each of these measurements, click on them.
- Camber
- Caster
- Toe
- Steering Axis Inclination (SAI)
- Included Angle
- Scrub Radius
- Riding Height
- Set Back
- Thrust Angle
- Steering Center
- Toe Out on Turns
Camber
When camber specifications are determined during the design stage, a number of factors are taken into account. The engineers account for the fact that wheel alignment specifications used by alignment technicians are for a vehicle that is not moving. On many vehicles, camber changes with different road speeds. This is because aerodynamic forces cause a change in riding height from the height of a vehicle at rest. Because of this, riding height should be checked and problems corrected before setting camber. Camber specs are set so that when a vehicle is at highway speed, the camber is at the optimal setting for minimum tire wear.
For many years the trend has been to set the camber from zero to slightly positive to offset vehicle loading, however the current trend is to slightly negative settings to increase vehicle stability and improve handling.
Caster
Positive caster improves straight line tracking because the caster line (the line drawn through the steering pivot when viewed from the side) intersects the ground ahead of the contact patch of the tire. Just like a shopping cart caster, the wheel is forced behind the pivot allowing the vehicle to track in a straight line.
If this is the case, then why did most cars have negative caster specs prior to 1975 ? There are a couple of reasons for this. In those days, people were looking for cars that steered as light as a feather, and cars back then were not equipped with radial tires. Non-radial tires had a tendency to distort at highway speed so that the contact patch moved back past the centerline of the tire (Picture a cartoon car speeding along, the tires are generally drawn as egg-shaped). The contact patch generally moves behind the caster line causing, in effect, a positive caster. This is why, when you put radial tires on this type of car, the car wanders from side to side and no longer tracks straight. To correct this condition, re-adjust the caster to positive and the car should steer like a new car.
Toe
Like camber, toe will change depending on vehicle speed. As aerodynamic forces change the riding height, the toe setting may change due to the geometry of the steering linkage in relation to the geometry of the suspension. Because of this, specifications are determined for a vehicle that is not moving based on the toe being at zero when the vehicle is at highway speed. In the early days prior to radial tires, extra toe-in was added to compensate for tire drag at highway speed.
On some older alignment machines, toe-in was measured at each wheel by referencing the opposite wheel. This method caused problems with getting the steering wheel straight the first time and necessitated corrective adjustments before the wheel was straight. Newer machines reference the vehicle's centerline by putting instruments on all four wheels. For more information on this see Steering Center and Thrust angle.
Included Angle
Scrub Radius
If the brake on one front wheel is not working, with positive scrub radius, stepping on the brake will cause the steering wheel to try to rip out of your hand. Negative scrub radius will minimize that effect.
Scrub radius is designed at the factory and is not adjustable. If you have a vehicle that is pulling even though the alignment is correct, look for something that will affect scrub radius.
Set Back
Some good alignment equipment will measure set back and give you a reading in inches or millimeters. A set back of less than 1/4 inch is considered normal tolerance by some manufacturers. More than that and there is a good chance that something is bent.
Steering Center
Another problem with steering center has to do with the type of roads that are driven on. Most roads are crowned to allow for water drainage, and unless you drive in England, Japan or another country where they drive on the left side of the road, you usually drive on the right side of the crown. This may cause the vehicle to drift to the right so that the steering wheel will appear to be off-center to the left on a straight road. The best way to compensate for this is as follows:
- If there is a difference in caster, it should be that the left wheel is more negative than the right wheel, but not more than 1/2 degree. Check the specs for any specific recommendations on side-to-side differences.
- If there is a difference in camber, then the left wheel should be more positive than the right wheel. Check the specs to see what the allowable difference is.
Toe Out on Turns
Toe-out on turns is measured by the turning angle gauges (turn plates) that are a part of every wheel alignment machine. The readings are either directly on the turn plate or they are measured electronically and displayed on the screen. Wheel alignment specifications will usually provide the measurements for toe-out on turns. They will give an angle for the inside wheel and the outside wheel such as 20 for the inside wheel and 18 for the outside wheel. Make sure that the readings are at zero on each side when the wheels are straight ahead, then turn the steering wheel so that the inside wheel is at the inside spec. then check the outside wheel.
The toe-out angles are accomplished by the angle of the steering arm. This arm allows the inside wheel to turn sharper than the outside wheel. The steering arm is either part of the steering knuckle or part of the ball joint and is not adjustable. If there is a problem with the toe-out, it is due to a bent steering arm that must be replaced.
Hello, thanks a lot for such a nice sharing.
回复删除Wheel Alignments Warwick Qld
Great Blog!! That was amazing. Your thought processing is wonderful. The way you tell the thing is awesome.
回复删除wheel alignments warwick qld